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ABSTRACT

We explore the orthogonal decomposition of tensors (also known as multi-
dimensional arrays or n-way arrays) using two different definitions of orthogonal-
ity. We present numerous examples to illustrate the difficulties in understanding
such decompositions. We conclude with a counterexample to a tensor extension
of the Eckart-Young SVD approximation theorem by Leibovici and Sabatier
[Linear Algebra Appl. 269(1998):307-329).
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1 Introduction

The problem of decomposing tensors (also called n-way arrays or multidimen-
sional arrays) is approached in a variety of ways by extending the singular value
decomposition (SVD), principal components analysis (PCA), and other meth-
ods to higher orders; see, e.g., [1, 2, 6, 7, 8,9, 10, 11, 12]. Tensor decompositions
are most often used for multimode statistical analysis and clustering, but may
also be used for compression of multidimensional arrays in ways similar to using
a low-rank SVD for matrix compression. For example, color images are often
stored as a sequence of RGB triplets, i.e., as separate red, green and blue over-
lays. An m x n pixel RGB image is represented by an m x n x 3 array, and a
collection of p such images is an m X n x 3 X p array and can be compressed by
a low-rank approximation.

The notation and basic properties of tensors are set forth in §2. Several
definitions of orthogonality and several rank orthogonal decompositions for ten-
sors are given in §3. Computational issues for orthogonal decompositions are
discussed in §4. Finally in§5, we present a counterexample to Leibovici and
Sabatier’s extension of the well-known Eckart-Young SVD approximation theo-
rem to tensors [10].

2 Tensors

Let A be an my x mgy X --+ X my, tensor over . The order of A is n. The jth
dimension of A is m;. An element of A is specified as

Aiyig-in»
where i; € {1,2,...,m;} for j = 1,...,n. The set of all tensors of size m; x
Mg X + -+ X My, is denoted by T (mi,ma2,...,my,). The shorthand 7, may be

used when only the order needs to be specified, or just 7 may be used when the
order and dimensions are unambiguous.
Let A,B € T(my,ma,...,my). The inner product' of A and B is defined as

ma ma Mnp
A-B= E E s E Ailizmin Biliz...,’" .
11=11i2=1 in=1

Correspondingly, the norm of A, ||A]|, is defined as
mi1 mo M
JAP=A-A= Z z Z Aiig---in'
11=11i2=1 in=1
We say A is a unit tensor if ||A|| = 1.

Example 1 Let 2,y € 7 (m); that is, z,y are vectors in ®™. Then z-y = z7y
where the superscript T denotes transpose. O

1n [10], the term is “contracted product” and the notation is (A, B).



Tensors of different orders may also be multiplied as follows. Suppose
C e T(my,...,mj_1,Mjt1,...,Myp) is a tensor of order n — 1 (note that m;
is missing). Then the contracted product® of A and C'is a vector of length m;,
and its i;th (1 < i; < m;) element is defined as

m1 Mj—1 Mjt1 My,
(AC),J = E E E E Ai1"'ij—1’ijij+1""inCi1""ij—1’ij+1"-in'
i1=1 ij—1=114;41=1 in=1

Note that the same notation is used for both contracted and inner products—the
difference is in the order of the tensors being multiplied.

Example 2 Suppose A € T (my,ms) is a tensor of order two, i.e., A is a matrix.
If b € T(my), then A-b = ATb in matrix notation. Similarly, if ¢ € T (my), then

A-c=Ac m|
A decomposed tensoris a tensor U € T (mq, ma,...,my) that can be written

as
U:u(l) ®u(2)®...®u(n)’ (]_)

where ® denotes the outer product and each uld) e R™i for j =1,...,n. The
vectors u(/) are called the components of U. In this case,

Uiyigei, = ug)uz(j) . -ugf).

A decomposed tensor is a tensor of rank one for all the definitions of rank
that we present in the next section. Decomposed tensors form the building
blocks for tensor decompositions. The set of all decomposed tensors of size
my X Mma X - - - XMy, is denoted by D(my,ms, ..., m,) with shorthands analogous

to 7.
Lemma 1 Let U,V € D where U is defined as in (1) and V is defined by
V:U(1)®U(2)®“‘®U(n). (2)

Then " "
(@) U-V=][[u?-0D, @) [U]=T]] D,

Jj=1 Jj=1

and, (c) U +V € D if and only if all but at most one of the components of U
and V are equal (within a scalar multiple).

Proof. Items (a) and (b) follow directly from the definitions. For item (c),
consider U,V € D such that n — 1 components are equal, i.e., w9 = v@ for all
i=2,...,n. Then W =U 4 V can be written as

W:w(l) ®u(2) ® ...®u(n),

2In [10], the notation A .. C is used for contracted products.



where w™) = u® 4+ v 50 the “if” statement of (c) is true. Next we show
the “only if” statement of (c¢). First consider the special case where n = 2,

AN AR AN

and W =U+V € D. Since W € D, we can write it as

w=lt]e[r]

Then, we have

pr = ac+eg, 3)
ps = ad+eh, (4)
gr = bec+ fyg, (5)
gs = bd+ fh. (6)

Dividing (3) by (5) and (4) by (6) yields two ratios for p/q, and setting those
equals gives
act+eg bc+ fg )
bd+ fh  ad+eh’

Cross-multiplying and simplifying (7) finally yields

(af — be)(ch —dg) = 0.

In other words, either u™) = v(!) or u(?) = v(?) (within a scalar multiple). So,
all but at most one of the components of U and V must match if W € D. This
argument can be extended to arbitrary n and m;. O

Without loss of generality, we assume that the components of unit decomposed
tensors are each unit vectors.

Although we have shown that for two decomposed tensors to be combined to
one decomposed tensor they must match in all but at most one component, the
same is not necessarily true when combining three or more decomposed tensors.,
as shown in the next example.

Example 3 Consider the following example. Let a,b € R™ with aLlb and
l|lal] = ||b]| = 1. Define ¢ = %(a +b), and

Ui=a®a®a, Us=a®b®Rc¢, Us;=a®c®D.

Then the sum of theses three decomposed tensors can be rewritten as the sum
of two despite the fact that they only match in one component:

3
m+%+%=¢;ﬂ+%h



where
Vi=a®d®b, V2=a®e®b,

2 1 2 1
d—\/;a—i-\/;b, e—\/;c+\/;b.

This is the result of splitting U, into two pieces based on the third component.
O

with

Lemma 2 Let U € D as defined in (1) and A € T. Then

Proof. Follows from the definitions. O

3 Orthogonal Rank Decompositions

3.1 Notions of Orthogonality
Let U,V € D be defined as in (1) and (2) respectively with [|[U]| = ||V]] = 1.
We say that U and V are orthogonal (ULV) if
U-V = Hu(j) @ = 0.
j=1
We say that U and V' are completely orthogonal (U L V) if for every j = 1....,n,
NOIRO)

We say that U and V' are strongly orthogonal (ULsV) if ULV and for every
ij=1...,n,

P = 0@ or 4@ | @D,
From the definition it follows that at least one pair must satisfy ) Lo(?)

Lemma 3 Let the decomposed tensors U and V of order n be defined as in (1)
and (2) respectively. Then

ULV =ULV =ULV.

3.2 Rank Decompositions

Our goal is to express a tensor A € T as a weighted sum of decomposed tensors,
T
A= Z a-iUia (8)
i—1

where 0; >0fori=1,...,r andeach U; € D and ||U;|]|=1fori=1,...,r.



e The rank of A, denoted rank(A), is defined to be the minimal r such
that A can be expressed as in (8). The decomposition is called the rank
decomposition.

e The orthogonal rank of A, denoted rank (A), is defined to be the minimal
r such that A can be expressed as in (8) and U; LU; for all ¢ # j. The
decomposition is called the orthogonal rank decomposition.

e The strong orthogonal rank of A, denoted rank (A), is defined to be the
minimal r such that A can be expressed as in (8) and U; L;U; for all ¢ # j.
The decomposition is called the strong orthogonal rank decomposition.’

As reported in [10], the definition of rank is due to Kruskal [8] and others, and
the definitions of orthogonal and strong orthogonal rank is due to Franc [4].
The general decomposition, orthogonal decomposition, and strong orthogonal de-
composition satisfy the orthogonality constraints (if any) but are not necessarily
minimal in terms of r.

A slightly different notion of rank that depends on a type of strong orthogo-
nal decomposition is the combinatorial orthogonal rank, denoted rank; (A). It
is defined as the minimal r such that A can be written as

T T r

11=112=1 in=1

where
U=uY ou? - @u™,

UiLUj foralli #j,1<i,j <r, and ||U;|]| = 1, 1 <i < r. The decomposition
(9) is the result of combining the components of the U;’s in every possible way
and is called the combinatorial orthogonal rank decomposition. In this case,
there are n" scalar multiples (i.e., o-values) that are involved rather than just
r as in the other decompositions. This definition is a variation of the definition
of rank for the higher-order SVD (HOSVD) by De Lathauwer [2] .

Lemma 4 The rank, orthogonal rank, strong orthogonal rank, and combinato-
rial orthogonal rank decompositions are each equivalent to the SVD for tensors
of order two.

Proof. This follows from the properties of the SVD (c.f., [5]). O

Example 4 Let a,b € R™ with alb, and let 61 > 09 > o3 > 0. Define
A € T(m,m,m) as

A=0, a®b®b+0y bbb +03 a®a®Db. (10)
—_—— ——— ——
Ui Uz Us

31n [10], the terms “free orthogonal rank” and “free rank decomposition” are used rather
than “strong orthogonal rank” and “strong orthogonal rank decomposition”.



Note that U; LU; for all ¢ # j, so (10) is a strong orthogonal decomposition of
A. Furthermore, A cannot be expressed as the sum of fewer weighted strong
orthogonal decomposed tensors, so the strong orthogonal rank of A is three.
Observe that A can also be expressed as

A=6, b@b®b +65 b®a®b +63 aQa®b, (11)
—— —— ———
o s Us
where
N N g1 O: N g9 O
61 =102+ 0%, Go=—", G3=—2,
g1 g1
b N —o1 b
a:701aj—02 , and b:702aA 91 .
o1 o1

Since @.Lb, we have [jiJ_sﬁj for all ¢ # j. Therefore (11) is also a strong orthog-
onal rank decomposition of A, and so the strong orthogonal rank decomposition
is not unique. It follows immediately that the closely related combinatorial
orthogonal rank decomposition is not unique. |

Example 5 Consider the tensor A as defined by (10); A can also be written as

A:&U+O'3U3, (12)

_ b
G=1[o2+02 and T="2T225460
g

Observe that U_LUs; in fact, (12) is an orthogonal rank decomposition of A,
and therefore the orthogonal rank of A is two. Alternatively from (11), we can
express A as

where

A=&[7+0A'303, (13)
where
2 2 P S S
&:\/a%+a§+% and U=bo 2T %% g),
o1 + 03 o

Note that U L hatUs, so () is also an orthogonal rank decomposition of A, so
the orthogonal rank decomposition is not unique. (Two other orthogonal rank
decompositions of A are possible as well.) m|

Lemma 5 Neither the orthogonal rank, strong orthogonal rank, nor combina-
torial orthogonal rank decomposition is unique.

Proof. See Examples 4 and 5. O

The lack of uniqueness in the various rank tensor decompositions is an im-
portant difference between tensor and matrix decompositions.

10



Example 6 We show how to ‘orthogonalize’ a tensor in a relatively simple
situation. Suppose that we have an order three tensor A € T (my,ma, m3)
defined as follows:

A= OlU + O'QV,
where o1 > 0y and,
U = vWeu®eu®,
v = W@ g v(3),

with «(®, () unequal, non-orthogonal unit vectors in R for i = 1,2, 3.
For i = 1,2,3, we can decompose v(?) as

vl = q@y) 4 D@

where
a® = .y
&) = o — o@Dy, and
4@ = (WD —a@u®)/a0,

Then, we can rewrite A as

A = (o140 aMa@a®) 4y @y gu®
b o aMa®a® O @ u® g a®)
b o aPa®a® M a® g u®
b 0y aWa®a® oM a® ga®
b 0 aWa®@a® a0 @ u® gy® (14)
b 0 aMa®a® g0 g u® g a®
b 0 aWa®a® a0 5a® gu®
+ oy D& 4B 4 2 a® @ a3,

Equation (14) shows that rank;_(A) < 8. Because of the way U and V' were
chosen (components neither equal nor orthogonal), equation (14) is a strong
orthogonal rank decomposition of A, and rank; (A) = 8. (From Equation (14),
we can also deduce that rank, (A) = 2.) This is not, however, an orthogonal
rank decomposition. Combining each pair of lines in (14), we get

VP u@u® @ (ul) +5a®) /2 + 42
s aDa® 41 @43 g y®
g aWa® 41 @y g y®
gy aWa? 41 @43 g B,

A
(15)

+ 4+

where
y=01+0 aMa®a® and 4 = o5 aMaPa®.

11



Finally, combining the last two lines of (15), we arrive at an orthogonal rank
decomposition,

A = V7217 uWeu® e ul® +4a®) /1y + 72

b oonaa® W ga® ol
+ooa® M g e® ge®)

so rank; (4) = 3. Note that combining vectors from (14) in different order
would have resulted in a different orthogonal rank decomposition. |

Theorem 1 ([10]) For a given tensor A,
rank(A) <rank, (A) <rank, (A). (16)

Proof. This follows from Lemma 3. O

Corollary 1 ([10]) For any A € Tz,
rank(A) = rank, (A) = rank, (A) = rank, _(A).

Proof. This follows from Lemma 4. O

Corollary 2 For any ordern > 2, there exists A € T, such that strict inequality
holds in (16).

Proof. An example of strict inequality for a tensor of order three (n = 3) is
given in Example 6, and that example can be generalized to any order. a

In our discussion of rank decomposition, we did not present a completely
orthogonal decomposition. In fact, we are not in general guaranteed that such
a decomposition can be found. A completely orthogonal decomposition corre-
sponds to a combinatorial orthogonal decomposition in which only the diagonal
elements (0y;...;) are nonzero; and so, in general, tensors cannot be diagonalized.

Corollary 3 ([10]) If a tensor can be decomposed as the weighted sum of com-
pletely orthogonal decomposed tensors, then equality holds in (16).

Proof. Follows from the definitions. O

Matrices (i.e., tensors of order two) are special cases that always have a
completely orthogonal decomposition.

Corollary 4 For any order n > 2, there exists A € T, such that A cannot be
decomposed as the weighted sum of completely orthogonal tensors.

12



Proof. See the construction of the decompositions of A in Example 6. O

We now have several examples illustrating that the strong orthogonal rank
and orthogonal rank decompositions are not unique. A partial ‘fix’ for lack
of uniqueness is the following. Without loss of generality, assume that the
o;’s in (8) are always ordered so that o1 > o2 > -+ > o,. Then define the
unique (strong) orthogonal rank decomposition to be the (strong) orthogonal
rank decomposition that has the largest possible o1, and given that choice for
o1, has the largest possible o3, and so forth. This decomposition is unique in
the sense that the weights are unique. The unit decomposed tensors are unique
if and only if no two o;’s are equal. A wunique combinatorial orthogonal rank
decomposition can be defined is a more complicated way by choosing the kth U
so that

ko k k
Z Z Z a?lig...in,
i1=lia=1  ip=1

is maximized.

Example 7 In Example 4, the unique strong orthogonal rank decomposition
is given by (11). Similarly, in Example 5, the unique orthogonal rank decompo-
sition is given by (5). m|

4 Greedy Tensor Decompositions
We present a method for generating a greedy orthogonal decomposition. Our
goal is to compute a series of weighted decomposed tensors such that

/4

A= "ol

i=1

where U; LUj for all i # j and ||U;]| = 1 for all i. We do not yet make any claims
as to whether or not this greedy orthogonal decomposition yields a orthogonal
rank decomposition.

In the greedy orthogonal decomposition, the {o,U} pairs are computed it-
eratively as follows. Define the kth residual tensor

k
Rk =A- ZU,’UZ',
i=1

with Ry = A, and let the set of tensors U}, be defined as
U, = {U1,Us, ..., UL},

with Uy = . Our goal is to find the best rank-1 approximation to the current
residual subject to orthogonality constraints; that is, we wish to solve

min fr(0,U) = ||Ry, — oU||?, st. UE€D, ||U||=1, ULU.

13



We can rewrite fr as
fr(o,U) = ||Ry||? = 20Ry - U + o*||U ||
At the solution, we have

Ofk = 2R, -U +20||U||* =0,
oo

so we can solve for o and conclude that minimizing f;, is the same as solving
max Ry -U, st. UeD, ||[U||=1, ULU. (17)

Define Uy, to be the solution of (17), and let o511 = Ry, - Ug41-
A greedy strong orthogonal decomposition can be similarly described, and
reduces to solving

max Ry -U, st. UeD, |U]|=1, ULsU. (18)
Lemma 6 The greedy (strong) orthogonal decomposition is finite.

Proof. This is a consequence of the fact that there are at most M = H?:l m;
(strong) orthogonal decomposed tensors.

Solving (17) or (18) is a very challenging task. For example, in order to solve
(17), we might use an alternating least squares (ALS) approach as follows. For
I=1,...,n, fix all components of U but the /th, and solve

max s-u, st. |U|| =1, ULU

where
s= Ry V@ @ul Y D ... gu™,

The difficulty with this approach is in enforcing the constraints.

We may also construct a sort of greedy approach for the combinatorial or-
thogonal decomposition, but the subproblems are even more complicated in this
case.

Zhang and Golub [12] explore various computational techniques when the
tensor has a completely orthogonal decomposition, in which case the problem
is much simpler. In [10], the RPVSCC method uses ALS to the the modes,
i.e., the completely orthogonal decomposed tensors, and then fills in the values
associated with the combinations of the components of the modes. De Lath-
auwer [2] presents several ALS methods for computing the HOSVD (a special
type of strong orthogonal decomposition). Kroonenberg and Jan de Leeuw [7]
propose an alternating least squares solution to (9) so that at each step an entire
set {uz(] ) }i4, is solved for some j while everything else is fixed. In other words,
the method concentrates on one subspace at a time.

14



5 Approximation of a Tensor

The well-known Eckart-Young approximation theorem [3, 5] says that if the
SVD of a matrix is given by

r

— § : T

A= oiuiv; ,
i=1

with o1 > 02 > ... > g, > 0, then the best rank-k approximation is given by

.
Ap = E aiuiviT
i=1

A consequence of this result is that the SVD can be approximated via a greedy
method which calculates each triplet {o;,u;,v;} in sequence. Now we can ask
whether or not the Eckart-Young theorem can be extended to tensor rank de-
compositions; i.e., is the best rank-k approximation of a tensor given by the sum
of the first k terms in its rank decomposition? The relates directly to whether or
not the greedy orthogonal, strong orthogonal, or combinatorial decompositions
produce a corresponding rank decomposition.

In the case of the strong orthogonal rank decomposition, the answer is defi-
nitely no, contrary to the result stated in [10], as the following counterexample
shows.

Example 8 Consider the strong orthogonal rank decomposition of a matrix
A € T(m,m,m) defined by
6
A=>"oiU;,
i=1

where the {o;,U;} pairs are defined as follows. Let the vectors a,b,c,d € R™
be two-by-two orthogonal, then let

o1 = 1.00, Ui = a®a®a,
oy = 0.75, U = bRb®D,
o3 = 0.70, Us = a®c®d,
oy = 0.70, Uy = a®d®ec,
g5 = 065, U5 = b®c®d,
g = 0.65, Us = bd®ec.

Note that o3Us and o5Us can be combined to form the decomposed tensor

b
NV = /o2 2‘\’/3”;'; c®d. (19)
5

Similarly, 04Us and o5Us can be combined to form
04(1 + 06b
¥ Vo =1/0% + 0} R®dR®c (20)
VO + 03 6

15



But,
Y1 =72 ~0.9552 < 01 =1,

so neither (19) nor (20) is the best rank one approximation to 4; A1 = oyu4 is.
However, the best strong orthogonal rank two approximation is given by

As = Vi + 1 Ve,
because V7 LV, and
v+ 72 =1.825 > 07 + 05 = 1.5625.

Thus, we have a counterexample to any Eckart-Young type theorem for strong
orthogonal rank decompositions. m|

Example 8 can be reworked to show that the combinatorial orthogonal rank
decomposition does not yield a best rank-k approximation either.

Example 9 Consider the tensor defined in Example 8. Let e and f be any
vectors that are orthogonal to each other and also to @ and b. We can express
a combinatorial orthogonal rank decomposition of A as follows.

4 4 4
_ _(1 _(2 _(3
A= Z z Z UiliQ,'Sugl) ® UEZ) ® ugs),
3 ia=11i3=1

11=1
where _ _
Ui = a®a®a, Us = e®c®d,
U, = bb®D, Uy f®d®c,

and the only non-zero &’s are

0111 = 01, 0222 = 02, 0133 = 03, 0233 = 04, 0144 = 05, 0244 = O§-

So, rank (A) = 4. The best combinatorial orthogonal rank-1 approximation
to A is Ay = 6111U1 = 01Uy (the same as the best strong orthogonal rank-1
approximation). But, the best combinatorial orthogonal rank-2 approximation

is yielded by
2 2 2
n _ (1 —(2 —(3
Ay = Z Z Z i1i2i3vg1) ®Ul(2) ®U1§3)'
i1=11i2=113=1

Here ~ ~
ViV, and Vo =¢gRd®ec,

where ¢ is some vector orthogonal to vil), and the only nonzero ¥’s are 4111 = %

and ’7122 =72- O

Example 3 shows that it is possible to add an orthogonal decomposed tensor
to a sum without increasing its rank (U; 4+ Us has rank 2 as does Uy + Us + Us).
This is contrary to a fundamental assumption used in the proof of Theorem 2
n [10]. So whether or not the Eckart-Young SVD approximation theorem can
be extended to the orthogonal rank decomposition is still an open question.

16



Conjecture 1 (Eckart-Young extended) Let the unique orthogonal rank de-
composition of a tensor A be given as in (8) and assume that o1 > 02 > -+ > 0.
Then the best orthogonal rank p (p < r) approximation to A satisfies

T
min _[[4- AP = Y o

rank A,=p i

and is given by

p
ApE E g;Uj.
i=1

6 Conclusions

There are multiple ways to orthogonally decompose tensors, depending both on
the definition of orthogonality as well as on the definitions of decomposition and
rank. An Eckart-Young type of best rank-k approximation theorem for tensors
continues to elude our investigations but can perhaps eventually be attained by
using a different norm or yet other definitions of orthogonality and rank.
Computing orthogonal tensor decomposition is a challenge as well. Most
methods are variations on ALS, a method which can be very slow to converge,
although recently several authors (c.f., [2, 12]) have presented new ideas.
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